K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

2 tháng 12 2018
https://i.imgur.com/b5F4Q5S.jpg
22 tháng 11 2022

Bài 3:

\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

16 tháng 7 2016

mình không biết

11 tháng 7 2017

hk bik

23 tháng 2 2020

cho 3 số x, y, z nha mấy bạn

22 tháng 5 2020

a, Giả sử \(x,y \vdots 3\)

=> \(x^2 ;y^2 \) : 3 dư 1

=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )

Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)

Chứng minh tương tự \(xy \vdots 4\)

\((3;4) =1 => xy \vdots 12\)

22 tháng 5 2020

còn câu b ạ?

20 tháng 2 2019

\(4x-xy+2y=3\)

\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)

\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)

\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Tự xét bảng

\(3y-xy-2x-5=0\)

\(\Rightarrow y\left(3-x\right)-2x=5\)

\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)

\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)

\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)

\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Tự xét

\(2xy-x-y=100\)

\(\Rightarrow x\left(2y-1\right)-y=100\)

\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)

\(\left(2x-1\right)\left(2y-1\right)=101\)

\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)

Tự xét bảng

P/s : bài 3 có gì sai ko ?

20 tháng 2 2019

bài 3 ko sai đâu

28 tháng 4 2020

Bài 3 : 

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có : 

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta có:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(+\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}.6=\frac{3}{2}\)