Cho tam giác ABC có AB=AC . Gọi M là trung điểm của BC . Chứng minh:
a) góc B = góc C
b) AM là phân giác của góc BAC
c) AM là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: AB = AC (GT)
=> Tam giác ABC cân tại A
Xét tam giác ABM và tam giác ACM:
AB = AC (GT)
Góc B = Góc C (Tam giác ABC cân tại A)
BM = CM (GT)
=> Tam giác ABM = Tam giác ACM (c - g - c)
b) Tam giác ABM = Tam giác ACM (cmt)
=> Góc BAM = Góc CAM (2 góc tương ứng)
=> AM là phân gicacs của góc BAC
c) Tam giác ABM = Tam giác ACM (cmt)
=> Góc AMB = Góc AMC (2 góc tương ứng)
Mà 2 góc này là 2 góc kề bù
=> Góc AMB = Góc AMC = 180 độ : 2 = 90 độ
=> AM vuông góc với BC
a) Có: AB = AC (GT)
=> Tam giác ABC cân tại A
Xét tam giác ABM và tam giác ACM:
AB = AC (GT)
Góc B = Góc C (Tam giác ABC cân tại A)
BM = CM (GT)
=> Tam giác ABM = Tam giác ACM (c - g - c)
b) Tam giác ABM = Tam giác ACM (cmt)
=> Góc BAM = Góc CAM (2 góc tương ứng)
=> AM là phân gicacs của góc BAC
c) Tam giác ABM = Tam giác ACM (cmt)
=> Góc AMB = Góc AMC (2 góc tương ứng)
Mà 2 góc này là 2 góc kề bù
=> Góc AMB = Góc AMC = 180 độ : 2 = 90 độ
=> AM vuông góc với BC
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
nên \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của \(\widehat{BAC}\)
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AM là đường trung trực của BC
1: Xét ΔABC có AB=AC
nên ΔABC cân tại A
hay \(\widehat{B}=\widehat{C}\)
cam máy tính hình nó mờ nha bạn
a) Xét ΔAMB và ΔAMC ta có:
AB=AC ( tích chất tam giác cân)
AM=MC (giả thiết)
AM cạnh chung
⇒ ΔAMB = ΔAMC (c-c-c)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng), mà hai góc này kề bù nên
\(\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90^o\)
Vậy AM ⊥ BC (đpcm)
b) từ câu a ta có ΔAMB = ΔAMC nên:
\(\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)
⇒ AM là tia phân giác của \(\widehat{BAC}\) (đpcm)
c) Ta có AM ⊥ BC (1)
BM=CM (2) vì AM vuông góc với BC và M cách đều BC (BM=CM)
từ (1) và (2) ⇒ AM là đường trung trực của AB
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
a) Xét tam giác ABM và tam giác ACM:
+ AM chung.
+ AB = AC (gt).
+ MB = MC (M là trung điểm của BC).
\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - c - c).
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.Mà AM là trung tuyến (M là trung điểm của BC).\(\Rightarrow\) AM là tia phân giác của góc BAC (Tính chất tam giác cân).