K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15$ (cm)

$CC'=\sqrt{BC'^2-BC^2}=\sqrt{17^2-15^2}=8$ (cm)

Diện tích xung quanh hình lăng trụ là:

$(9+12+15).8=288$ (cm2)

 

a: BB'=2a^2:a=2a

V=BB'*S ABC

=2a*1/2a^2

=a^3

MN
30 tháng 8

a) Với hình lăng trụ đứng ABC.ABC, diện tích tứ giác ABBA bằng 2a^2 và đáy ABC là tam giác vuông cân tại A, ABa. Thể tích khối lăng trụ ABC.ABC có thể tính bằng công thức: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Vì đáy ABC là tam giác vuông cân nên diện tích đáy là \(\frac{1}{2} \times a \times a = \frac{1}{2}a^2\). Chiều cao của lăng trụ chính là cạnh AB, vì tam giác ABa là tam giác vuông cân nên \(AB = \sqrt{2}a\). Do đó, thể tích khối lăng trụ ABC.ABC là: \(V = \frac{1}{3} \times \frac{1}{2}a^2 \times \sqrt{2}a = \frac{\sqrt{2}}{6}a^3\). b) Với hình lăng trụ đứng ABC.ABC, góc giữa (ABC) và (ABC) bằng 60°, ta cũng áp dụng công thức tính thể tích khối lăng trụ: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Diện tích đáy và chiều cao đã được tính tương tự như phần a), ta có thể tính được thể tích khối lăng trụ ABC.ABC.

28 tháng 4 2017

Chọn A.

Phương pháp

Tính diện tích tam giác đáy và chiều cao lăng trụ suy ra thể tích theo công thức V=Bh .

Cách giải: 

30 tháng 3 2019

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Diện tích đáy là: $(12.16):2=96$ (cm2)

Diện tích toàn phần:

$S=p_{đáy}.h+2S_{đáy}=(16+12+20).12+2.96=768$ (cm2)

Thể tích lăng trụ:

$V=S_{đáy}.h=96.12=1152$ (cm3)

19 tháng 12 2019

Đáp án D

14 tháng 1 2019

Chọn D