Cho nửa đường tròn đường kính AB, tâm O. Đường tròn tâm A bán kính AO cắt nửa đường tròn đã cho tại C. Đường tròn tâm B bán kính BO cắt nửa đường tròn đã cho tại D. Đường thẳng qua O và song song với AD cắt nửa đường tròn đã cho tại E. Chứng minh AD vuông góc với OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên ∆ ABC vuông tại C
CO = OA = (1/2)AB (tính chất tam giác vuông)
AC = AO (bán kính đường tròn (A))
Suy ra: AC = AO = OC
∆ ACO đều góc AOC = 60 °
∆ ADB nội tiếp trong đường tròn đường kính AB nên ∆ ADB vuông tại D
DO = OB = OA = (1/2)AB (tính chất tam giác vuông)
BD = BO(bán kính đường tròn (B))
Suy ra: BO = OD = BD
∆ BOD đều
Trong đường tròn (O) ta có:
góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{DCB}=90^0\)
Xét tứ giác DCBO có
\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối
\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC