K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Đáp án: D

 Hướng dẫn giải:

Gọi O là giao điểm của AC và BD, M là trung điểm của SA.

Qua M kẻ đường thẳng vuông góc với SA cắt SO tại I

⇒ I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD

⇒ S I = R = 2

Ta có:

 

⇒ S O = S M . S A S I = S A 2 2 2

⇒ S A = S O 2

⇒ A B = 2 ⇒ S A B C D = A B 2 = 4

⇒ V S . A B C D = 1 3 . S O . S A B C D = 4 2 3

23 tháng 3 2017

Chọn D

Phương pháp: Xác định tâm của mặt cầu

ngoại tiếp khối chóp.

28 tháng 3 2019

Đáp án D

Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó  O I ⊥ ( A B C D )

⇒ I A = I B = I C = I D mà  ∆ S A C  vuông tại A I A = I S = I C . Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra I A = a 2 ⇒ S C = 2 a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng A B C D ⇒ S C ; A B C D ^ = S C ; A C ^ = S C A ^ = 45 °  .Suy ra  ∆ S A C  vuông cân  ⇒ S A = A C = 2 a ⇒ V S . A B C D = 1 3 . S A . S A B C D = 1 3 . 2 a . a . a 3 = 2 a 3 3 3 .

14 tháng 10 2018

Chọn D.

Phương pháp: Xác định tâm của mặt cầu ngoại tiếp khối chóp.

Cách giải: Gọi O là tâm của đáy. I là tâm của mặt cầu ngoại tiếp hình chóp. Dễ thấy I là trung điểm SC    S C A ^ = 45 °

13 tháng 11 2017

Đáp án C

3 tháng 12 2017

22 tháng 3 2018

Đáp án C

3 tháng 6 2019

18 tháng 4 2016

S D A H B M C I N

Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)

      M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)

Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy

Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)

\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)

Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)

Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC

\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)

Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)