Bạn Đức có 6 quyển sách Văn khác nhau và 10 quyển sách Toán khác nhau. Hỏi bạn Đức có bao nhiêu cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại.
A. 560
B. 420
C. 270
D. 150
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
TH1: 3 quyển được chọn có 2 quyển sách Văn, 1 quyển sách Toán.
Chọn 2 quyển Văn trong 6 quyển Văn khác nhau có cách.
Chọn 1 quyển Toán trong 10 quyển Toán khác nhau có cách.
Áp dụng quy tắc nhân, có
TH2: 3 quyển được chọn có 2 quyển sách Toán, 1 quyển sách Văn.
Chọn 1 quyển Văn trong 6 quyển Văn khác nhau có cách.
Chọn 2 quyển Toán trong 10 quyển Toán khác nhau có cách.
Áp dụng quy tắc nhân, có
Vậy số cách chọn ra 3 quyển sách trong đó có đúng 2 quyển cùng loại là 150 + 270 = 420.
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách
Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách
Chọn B
b, TH1: 1 quyển sách toán và 1 quyển sách văn.
Có 4 cách chọn sách toán.
Có 3 cách chọn sách văn.
\(\Rightarrow\) Có \(4.3=12\) cách chọn thỏa mãn.
TH2: 1 quyển sách toán và 1 quyển sách ngoại ngữ.
Có 4 cách chọn sách toán.
Có 2 cách chọn sách ngoại ngữ.
\(\Rightarrow\) Có \(4.2=8\) cách chọn thỏa mãn.
TH3: 1 quyển sách văn và 1 quyển sách ngoại ngữ.
Có 3 cách chọn sách văn.
Có 2 cách chọn sách ngoại ngữ.
\(\Rightarrow\) Có \(3.2=6\) cách chọn thỏa mãn.
Vậy có \(12+8+6=26\) cách chọn thỏa mãn yêu cầu bài toán.
Không gian mẫu: \(10!\)
a. Xếp hai cuốn văn và toán ở 2 đầu: có \(5.5.2!\) cách
Xếp 8 cuốn còn lại vào giữa hai cuốn vừa xếp: \(8!\) cách
Xác suất: \(P=\dfrac{5.5.2!.8!}{10!}=\dfrac{5}{9}\)
b. Xếp 5 cuốn sách văn: \(5!\) cách
5 cuốn sách văn tạo thành 6 ô trống, xếp 5 cuốn sách toán vào 6 ô trống: \(A_6^5\) cách
Tổng cộng: \(5!.A_6^5\) cách
Xác suất: \(P=\dfrac{5!.A_6^5}{10!}=\dfrac{1}{42}\)