Cho hình vuông ABCD. Gọi I, K theo thứ tự là trung điểm của các cạnh AB, CD. Nối CI, AK. CMR: a) Tứ giác AICK là hình bình hành. b) Gọi M là trung điểm của BC. Gọi P, Q lần lượt là giao điểm của DM với IC và AK. CMR: DM = AK và DM vuông AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
c, mk k bt lm xl bn
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
a: Xét tứ giác AICK có
AK//CI
AK=CI
Do đó: AICK là hình bình hành
ABCD là hình bình hành ⇒ AB = CD.
M là trung điểm AB ⇒ AM = MB = AB/2.
N là trung điểm CD ⇒ CN = DN = CD/2.
⇒ AM = MB = CN = DN.
+ Tứ giác BMDN có: BM // DN và BM = DN
⇒ BMDN là hình bình hành
⇒ DM // BN hay ME // NK
+ Tứ giác AMCN có: AM // NC, AM = NC
⇒ AMCN là hình bình hành
⇒ AN // CM hay EN // MK.
+ Tứ giác MENK có: ME // NK và NE // MK
⇒ MENK là hình bình hành.
a) MENK là hình thoi
⇔ MN ⊥ EK.
⇔ CD ⊥ AD (Vì EK // CD và MN // AD)
⇔ ABCD là hình chữ nhật.
b) MENK là hình chữ nhật
⇔ MN = EK
Mà MN = BC; (vì tam giác MCD có E và K lần lượt là trung điểm MD, MC nên EK là đường trung bình của tam giác MCD).
⇔ CD = 2.BC.
c) MENK là hình vuông
⇔ MENK là hình thoi và đồng thời là hình chữ nhật
⇔ ABCD là hình chữ nhật và có CD = 2.BC.
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???
a) ta có: AB = CD ( ABCD là h.b.h)
=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)
mà AK // IC
=> AKCI là hình bình hành ( dấu hiệu)
xét \(\Delta DFC\)
có: DI =IC (gt)
EI // FC ( AKCI là h.b.h)
=> EI là đường trung bình của \(\Delta DFC\)
=> DE = EF ( t/c')
cmtt với \(\Delta AEB\)ta có: EF = FB
=> DE=EF=FB
b) xét \(\Delta ABD\)
có: AM=MD
AK=KB
=> KM là đường trung bình của \(\Delta ABD\)
=> KM // BD và \(KM=\frac{1}{2}BD\)
cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)
=> KM // IN (//BD)
\(KM=IN\left(=\frac{1}{2}BD\right)\)
=> KMIN là hình bình hành ( dấu hiệu)
a: Xét tứ giác BMDP có
BM//DP
BM=DP
=>BMDP là hình bình hành
b: Xet ΔADH có P là trung điểm của AD và PQ//DH
=>Q là trung điểm của AH
ΔABP=ΔDAN
=>góc ABP=góc DAN
=>góc ABP+góc BAQ=90 độ
=>ΔABQ vuông tại Q
=>BQ vuông góc AH
=>ΔBAH cân tại B
=>BA=BH
a: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành