K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

22 tháng 4 2019

Đáp án D

TXĐ: D= R.

Hàm số có ba điểm cực trị khi và chỉ khi m < 1.

 lần lượt là ba điểm cực trị của đồ thị hàm số.

Để ABC là tam giác vuông cân thì 

19 tháng 5 2017

20 tháng 3 2018

Đáp án B

19 tháng 8 2019

Chọn A

Ta có:

Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .

Với điều kiện (*) gọi ba điểm cực trị là:

.

Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.

Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC

Tam giác ABC vuông khi:

Vậy với m = ± 1  thì thỏa mãn yêu cầu bài toán.

[Phương pháp trắc nghiệm]

Yêu cầu bài toán

⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0

⇔ m = ± 1

29 tháng 3 2017

Chọn B

9 tháng 7 2019

Đáp án là B  

Cách 1. Sử dụng công thức tính nhanh ta có

Cách 2. Nhận xét m thỏa mãn thì –m cũng thỏa mãn và hàm số có 3 điểm cực trị khi và chỉ  khi m≠ 0 suy ra chọn B

22 tháng 7 2019

Đáp án là B

TXĐ D= ℝ

Cách 1. 

Ta có:  y ' = 4 x 3 − 4 m x = 4 x x 2 − m

Do hàm số đã cho là hàm số trùng phương nên để đồ thị hàm số y = x 4 − 2 m x 2 + 2 m − 3  có ba điểm cực trị là ba đỉnh của một tam giác cân thì phương trình y ¢= 0 phải có 3 nghiệm thực phân biệt.

Û x 2 = m có hai nghiệm phân biệt x ¹ 0 Û m > 0 . 

Cách 2. (Dùng cho trắc nghiệm)

Do hàm số đã cho là hàm số trùng phương nên để đồ thị hàm số y = x 4 − 2 m x 2 + 2 m − 3  có ba điểm cực trị là ba đỉnh của một tam giác cân thì  a . b < 0 ⇔ 1. − 2 m < 0 ⇔ m > 0.

7 tháng 7 2019