K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Đáp án D

Bất phương trình

log 2 x + m ≥ 1 2 x 2 ⇔ m ≥ 1 2 x 2 − log 2 x     * .

Xét hàm số f x = 1 2 x 2 − log 2 x với  x ∈ 1 ; 3 ,

ta có  f ' x = x − 1 x . ln 2 = x 2 . ln 2 − 1 x . ln 2 .

Phương trình

f ' x = 0 ⇔ x 2 . ln 2 − 1 = 0 ⇔ x 2 = 1 ln 2 ⇔ x = 1 ln 2 .

Tính các giá trị

f 1 = 1 2 ; f 1 ln 2 = 1 2 ln 2 + 1 2 log 2 ln 2 ; f 3 = 9 2 − log 2 3.

Dựa vào BBT, suy ra giá trị nhỏ nhất của hàm số f(x) là

f 1 ln 2 = 1 2 ln 2 + 1 2 log 2 ln 2 .

Khi đó, bất phương trình (*) có nghiệm

x ∈ 1 ; 3 ⇔ m ≥ 1 2 ln 2 + 1 2 log 2 ln 2 .

21 tháng 8 2018

Đáp án D

Bất phương trình

Xét hàm số

Phương trình

Tính các giá trị

Dựa vào BBT, suy ra giá trị nhỏ nhất của hàm số f(x) là

Khi đó, bất phương trình (*) có nghiệm

3 tháng 4 2017

6 tháng 11 2019

Bất phương trình x2-3x+2  ≤ 0 ⇔ 1 ≤ x ≤ 2

Bất phương trình mx2+(m+1) x+m+1   ≥ 0  

Xét hàm số  f ( x ) = - x - 2 x 2 + x + 1   ,   1 ≤ x ≤ 2

Có  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2   > 0   ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

5 tháng 10 2017

Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.

Bất phương trình  mx2+ (m+ 1) x+ m+1≥0

⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1

Xét hàm số f ( x ) = - x - 2 x 2 + x + 1   với 1≤ x≤ 2

Có đạo hàm  f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2

Yêu cầu bài toán  ⇔ m ≥ m a x [ 1 ; 2 ]   f ( x ) ⇔ m ≥ - 4 7

Chọn C.

5 tháng 6 2019

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

9 tháng 7 2019

19 tháng 9 2017