Cho hai đường thẳng phân biệt a; b và mặt phẳng α . Mệnh đề nào dưới đây đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các tam giác trên có hai loại:
+ Loại 1: Gồm các tam giác có 2 đỉnh điểm nằm trên a, 1 đỉnh nằm trên b. Số tam giác thuộc loại này là
+ Loại 2: Gồm các tam giác có 1 đỉnh điểm nằm trên a, 2 đỉnh nằm trên b. Số tam giác thuộc loại này là
Vậy theo quy tắc cộng, số tam giác cân tìm là: 120 + 168 = 288.
Chọn C.
Mỗi câu sau đây là đúng hay sai ?
a) Có một và chỉ một đường thẳng đi qua hai điểm (phân biệt) cho trước
Đúng
b) Có đúng ba đường thẳng đi qua ba điểm (phân biệt) cho trước
Sai
c) Có đúng 6 đường thẳng đi qua bốn điểm (phân biệt) cho trước
Sai
d) Hai đường thẳng phân biệt thì song song với nhau
Sai
e) Hai đường thẳng không cắt nhau thì song song với nhau
Sai
f) Hai đường thẳng không song song thì cắt nhau
Sai
g) Hai đường thẳng không phân biệt thì trùng nhau
Đúng
h) Ba đường thẳng phân biệt, từng đôi một cắt nhau thì có đúng 3 giao điểm (phân biệt)
Sai
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy xác suất cần tìm là 135 165 = 9 11 . => Chọn đáp án D.
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy cx nhảy vô trả lời. Tui L6 cx có thể lm mấy bài L5 trên mạng mà !!!