Cho khối S.ABC có góc A S B ^ = B S C ⏜ = C S A ⏜ = 60 0 và SA=2, SB=3, SC=4. Tính thể tích khối S.ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Thể tích khối chóp vuông
Cách giải:
S.ABC có SA, SB, SC đôi một vuông góc với nhau
⇒ S.ABC là tứ diện vuông tại đỉnh S
Đáp án A
Trên cạnh SB, SC lần lượt lấy M và N sao cho SA = SM = SN =2
Ta có SAMN là tứ diện đều cạnh 2, khi đó thể tích của tứ diện SAMN là V S A M N = 2 2 3
Lại có V S A M N V S A B C = S A S A . S M S B . S N S C = 1 3 ⇒ V S A B C = 3 V S A M N = 2 2
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có: