giá trị x >0 thỏa mãn
\(\frac{x}{15}=\frac{y}{9}\)vãy=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cho
x /15 = y/9 =k
=> x= 15k
y=9k
thay vao xy =15 ta co
15k.9k =15
135.k2=15
k2 = 1/9
k =1/3 hay -1/3
mà x lớn hơn 0 =>k=1/3
x/15 =1/3 =>x=5
Đặt \(\frac{x}{15}=\frac{y}{9}\) = k => x = 15k; y = 9k
=> xy = 15k.9k = 135.k2 = 15
=> k2 = \(\frac{15}{135}=\frac{1}{9}\)
=> k \(\in\){\(-\frac{1}{3};\frac{1}{3}\)}
Mà x,y > 0 => k > 0
=> k = \(\frac{1}{3}\)
=> x = \(15.\frac{1}{3}=5\)
=> y = 15:5 = 3
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
\(\frac{x}{15}=\frac{y}{9}\Rightarrow\frac{x}{5}=\frac{y}{3}\Rightarrow y=\frac{3}{5}x\)
Thay vào : \(xy=15\Rightarrow x\cdot\frac{3}{5}x=15\Rightarrow x^2=25\)
Mà x>0 => x= 5.
x/15 = y/9
x.9 = 15.y
x/y=9/15=3/5
Mà 3.5 =15
Nên x=3, y=5
Vậy x=3
ta có:\(\frac{x}{15}=\frac{y}{9}=k\Rightarrow x=15k;y=9k\)
ta có: 15k.9k=15
135.k^2=15
k^2=1/9 suy ra k= cộng trừ 1/3
* với k=-1/3, ta có: x=-1/3.15=-5
y=-1/3.9=-3
*với k=1/3, ta có: x=1/3.15=5
y=1/3.9=3
đặt x/15=y/9=k =>x=15k =>y=9k vì x.y=15=>15k.9k=15 135k^2=15 k^2=15:135=1/9 =>k=-1/9 hs k=1/9 với k=-1/9 => x/15=-1/9=>x=-15/9 y/9=-1/9=>y=-1 tương tự bn tự làm vs TH2
1,x+9/x+5=2/7
=>(x+9).7=(x+5).2
=>7x+63=2x+10
=>7x-2x=10-63
=>5x=-53=>x=-53/5
7x=2y<=>x/2=y/7
Áp dụng...
=>x=2;y=7
1/
Đề \(\Rightarrow z^{15}+x^{15}-\left(y^{15}+z^{15}\right)=2\left(y^{2016}-x^{2016}\right)\)
\(\Rightarrow x^{15}-y^{15}=2\left(y^{2016}-x^{2016}\right)\)
+Nếu \(x=y\text{ thì }VT=0=VP\)
+Nếu \(x>y\text{ thì }VT>0>VP\)
+Nếu \(x
\(1=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}=\left(\frac{x+y}{2}+1\right)^2-1\)
\(\Rightarrow\left(\frac{x+y}{2}+1\right)^2\ge2\Rightarrow\frac{x+y}{2}+1\ge\sqrt{2}\Rightarrow x+y\ge2\sqrt{2}-2\)
\(1=x+y+xy\ge2\sqrt{xy}+xy=\left(\sqrt{xy}+1\right)^2-1\)
\(\Rightarrow\left(\sqrt{xy}+1\right)^2\le2\Rightarrow\sqrt{xy}+1\le\sqrt{2}\Rightarrow\sqrt{xy}\le\sqrt{2}-1\)
\(\Rightarrow xy\le3-2\sqrt{2}\)
\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}=\frac{x+y+xy}{x+y}+\frac{x+y}{xy}\)
\(=1+\left(\frac{xy}{x+y}+\frac{\left(\sqrt{2}-1\right)^2}{4}.\frac{x+y}{xy}\right)+\frac{1+2\sqrt{2}}{4}.\frac{x+y}{xy}\)
\(\ge1+2\sqrt{\frac{xy}{x+y}.\frac{\left(\sqrt{2}-1\right)^2}{4}\frac{x+y}{xy}}+\frac{1+2\sqrt{2}}{4}.\frac{2\sqrt{2}-2}{3-2\sqrt{2}}=\frac{5+5\sqrt{2}}{2}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\sqrt{2}-1\)