Cho hàm số y = a x + b c x + d có đồ thị như hình vẽ bên, trong đó d < 0 . Mệnh đề nào dưới đây đúng?
A. a < 0 , b > 0 , c < 0
B. a < 0 , b < 0 , c < 0
C. a < 0 , b < 0 , c > 0
D. a < 0 , b > 0 , c > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Cách 1: Từ đồ thị, ta có b d = y 0 > 0 . Suy ra b < 0 .
Lại có y = 0 ⇔ x = − b a < 0 . Suy ra a < 0 . Do đó đáp án đúng là A.
Cách 2: Từ đồ thị, ta có đường tiệm cận đứng x = − d c < 0 và tiệm cận ngang y = a c > 0 . Do d < 0 nên c < 0 . Suy ra a < 0 .
Lại do b d = y 0 > 0 nên suy ra b < 0 . Do đó đáp án đúng là A.
Đáp án B.
Từ đồ thị ta có:
Loại b > 0, c < 0, d < 0 và b < 0, c < 0, d < 0. Còn lại b > 0, c > 0, d < 0; b <0, c > 0, d < 0.
* Cho x = 0 => y = b/d < 0 => b > 0. Đáp án B > 0, c > 0, d < 0.
Đáp án C.
Đồ thị hàm bậc bốn trùng phương có dạng chữ M nên suy ra a <0 .
Đồ thị hàm số cắt trục Oy tại điểm (0;c) nên suy ra c < 0.
Hàm số có ba cực trị nên suy ra ab < 0 , (a, b trái dấu). Mà a < 0 nên suy ra b > 0.
Vậy C là đáp án đúng.
Chọn đáp án B.
Từ đồ thị hàm số, ta có: giao điểm của đồ thị hàm số với trục tung nằm phía trên trục hoành nên b d > 0
Tiệm cận đứng của đồ thị nằm bên phải trục tung nên - d c < 0