Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC . Khẳng định nào sau đây SAI?
C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
+) Ta có:
+) Ta có:
+) Ta có: mp (IBD) cắt hình chóp theo thiết diện là tam giác IBD nên C sai.
+) Ta có: (IBD) ∩ (SAC) = IO nên D đúng.
Đáp án C
Ta có: O I / / S A O I ∉ S A B ⇒ O I / / S A B nên A đúng
Ta có: O I / / S A O I ∉ S A D ⇒ O I / / S A D nên B đúng
Ta có: (IBD)cắt hình chóp theo thiết diện là tam giác IBD nên
Ta có: I B D ∩ S A C = I O nên D đúng.
Chọn B.
Phương pháp: Xét tính đúng sai của từng mệnh đề.
Cách giải: B sai vì mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là ∆ I B D
Đáp án C
Phương pháp: Suy luận từng đáp án.
Cách giải:
A đúng.
Ta có IO // SA => IO // (SAB) và IO // (SAD) => B, D đúng.
Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện chính là tam giác IBD. C sai
Đáp án B
Gọi P = M N ∩ A C ; I = P K ∩ S O
Do M N / / B D nên giao tuyến của (MNK) với (SBD) song song với MN. Qua I dựng đường thẳng song song với MN cắt SD, SB lần lượt tại E và F khi đó thiết diện là ngũ giác K E M N F