Hãy chứng minh 2.n+5 và 3.n+7 (n thuộc N) là hai số nguyên tố cùng nhau.
Mk sẽ tick ai trả lời nhanh và đúng nhất, giúp mk nhé, cố lên!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau
1)
Gọi d là ƯC(n+2;3n+5) (d thuộc N*)
=>n+2 chia hết cho d =>3n+6 chia hết cho d
=>3n+5 chia hết cho d
=>3n+6-3n-5 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(n+2;3n+5)=1
=>ĐPCM
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
gọi UCLN(n+3; 2n + 5) = d
=> n+3 chia hết cho d và 2n + 5 chia hết cho d
=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d
=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau
gọi UCLN(n+3;2n+5) là d
theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d
2n+5 chia hết cho d
-> (2n+6)-(2n+5) chia hết cho d
-> 2n+6-2n-5 chia hết cho d
-> 1 chia hết cho d
Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT ! :)
Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))
\(\Rightarrow\)2n+5\(⋮\)d
6n+11\(⋮\)d
\(\Rightarrow\)12n+30\(⋮\)d
12n+22\(⋮\)d
\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d
\(\Rightarrow\)8\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}
Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ
\(\Rightarrow\)d=lẻ=1
Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)
Gọi (2n + 5 , 6n + 11) = d (d thuộc N*)
=> 2n + 5 \(⋮\)d
6n + 11 \(⋮\)d
=> 3(2n + 5) \(⋮\)d
6n + 11 \(⋮\)d
=> 6n + 15 \(⋮\)d
6n + 11 \(⋮\)d
=> (6n + 15) - (6n + 11) \(⋮\)d
=> 6n + 15 - 6n - 11 \(⋮\)d
=> 15 - 11 \(⋮\)d
=> 4 \(⋮\)d
=> d \(\in\) Ư(4)
Mà ta thấy 2n + 5 và 6n + 11 là số lẻ
Vậy d \(\in\) Ư(4) là số lẻ
Mà Ư(4) là số lẻ là {1} => d = 1
Vậy (2n + 5 , 6n + 11) = 1 hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(n+2;3n+5\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}\)
\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó: ƯCLN(n + 2; 3n + 5) = 1
Vậy hai số n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.
Học tốt nhé ^3^
Gọi ƯCLN(n + 2, 3n + 5) là d (d thuộc N*)
Ta có n + 2 chia hết cho d
3n + 5 chia hết cho d
=> 3(n + 2) chia hết cho d
3n + 5 chia hết cho d
=> 3n + 6 chia hết cho d
3n + 5 chia hết cho d
=> (3n + 6) - (3n + 5) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Ư(1) = {1}
=> d = 1
=> ƯCLN (n+2, 3n + 5) = 1
Vậy n + 2 và 3n + 5 là hai số nguyên tố cùng nhau
(Mik nghĩ vậy tại mik ko nhớ cho lắm)
Hok tốt
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
2n + 5 và 3n+ 7
=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d
=> 2n+5 chia hết cho d
=> 3n+7 chai hết cho d
=> 3( 2n+5) chia hết cho d
=> 2( 3n+7) chia hết cho d
=> 6n + 15 chia hết cho d
=> 6n+ 14 chia hết cho d
=> 6n+ 15- 6n + 14 chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> UCLN ( 2n+5) và 3n+7 là 1
=> đpcm
Tick nhé
Gọi UCLN(2n + 5; 3n + 7) là d
=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d
3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=>UCLN(2n + 5; 3n + 7) = 1
Vậy...