Biết rằng bất phương trình log 2 5 x + 2 + 2 log 5 x + 2 2 > 3 có tập nghiệm là S = log a b ; + ∞ , với a, b là các số nguyên dương nhỏ hơn 6 và a ≠ 1. Tính P = 2 a + 3 b
A. P = 16
B. P = 7
C. P = 11
D. P = 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng : với mọi số tự nhiên n>1 thì \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)\(\sqrt{n}\)
Đáp án A
log 2 5 x + 2 + 2 log 5 x + 2 2 > 3 ⇔ log 2 5 x + 2 + 2 log 2 5 x + 2 > 3 *
Đặt: t = log 2 5 x + 2 > 1 ,
Khi đó * ⇔ t + 2 t > 3 ⇔ t > 2
Khi đó:
log 2 5 x + 2 > 2 ⇔ 5 x > 2 ⇔ x > log 5 2 = log a b ⇒ a = 5 b = 2