K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Ta có:  x 2 –  y 2  = (x + y)(x – y)

Thay x = 87, y = 13, ta được:

x 2  –  y 2  = (x + y)(x – y)

             = (87 + 13)(87 – 13)

             = 100.74 = 7400

9 tháng 7 2016

a, x^2 - y^2 tại x=87 và y=13

       x^2 - y^2 = ( x + y ) - ( x- y )

Thay x=87 và y=13 vào biểu thức trên, ta có:

       ( 87 + 13 ) - ( 87 - 13 ) = 100 - 74 = 26

b, x^3 - 3x^2 + 3x - 1 tại x=101

      x^3 - 3x^2 + 3x -1 = x^3 - 3x^2.1+3x.1^2 + 1^2

                                 = ( x - 3 ) ^ 3

  Thay x=101 vào biểu thức trên, ta có:

       ( 101 - 3 ) ^ 3= 98 ^ 3 = 941192

c, x^3 + 9x^2 + 27x + 27 tại x=97

     x^3 + 9x^2 + 27x + 27 = x^3 + 3x^2. 3 + 3x. 3^2 + 3^3

                                      = ( x - 3 ) ^ 3

 Thay x=97 vào biểu thức trên, ta có:

         ( 97 - 3 ) ^ 3 = 94 ^3 = 830584

       MỆT QUÁ!!

31 tháng 10 2021

a: \(=\left(x-y\right)\left(x+y\right)\)

\(=74\cdot100=7400\)

c: \(=\left(x+2\right)^3\)

\(=10^3=1000\)

31 tháng 10 2021

a) \(=\left(x-y\right)\left(x+y\right)\)

    Thay \(x=87;y=13\) ta đc:   \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)

b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

   Thay \(x=10;y=-1\) ta đc:

    \(10^3-\left(-1\right)^3=1000-1=999\)

c)\(=\left(x+2\right)^3\)

   Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)

d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)

   Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

8 tháng 4 2018

a. Ta có: x2 – y2 = (x + y)(x – y)

b. Thay x = 87, y = 13, ta được:

x2 – y2 = (x + y)(x – y)

      = (87 + 13)(87 – 13)

      = 100.74 = 7400

c. Ta có: x3 + 9x2 + 27x + 27

      = x3 + 3.x2.3 + 3.x.32 + 33

      = (x + 3)3

Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000

11 tháng 6 2016

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)

2 tháng 9 2020

Bài 5 là quá kiểu hiển nhiên roài phá ra là xong mà :))))))

Bài 6:

\(A=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\) 

\(B=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

\(C=\left(2x-7\right)^2=\left(2.2-7\right)^2=\left(4-7\right)^2=\left(-3\right)^2=9\)

Bài 1:

a) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)(Đpcm)

b) \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)(Đpcm)

Bài 2:

a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)

b)\(25x^2-30x+9=\left(5x\right)^2-2.5.3x+3^2=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)

c)\(4x^2-28x+49=\left(2x\right)^2-2.2.7x+7^2=\left(2x-7\right)^2=\left(2.4-7\right)^2=1^2\)

26 tháng 8 2021

a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)

b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)