K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ: ID⊥AB, IE⊥BC, IF⊥AC

Xét hai tam giác vuông ΔIBD và ΔIEB, ta có:

∠(DBI) =∠(EBI) (gt)

∠(IDB) =∠(IEB) =90o

BI cạnh chung

Suy ra: ΔIDB= ΔIEB(cạnh huyền, góc nhọn)

Suy ra: ID = IE ( hai cạnh tương ứng)

Xét hai tam giác vuông ΔIEC và ΔIFC, ta có:

∠(ECI) =∠(FCI)

∠(IEC) =∠(IFC) =90o

CI cạnh huyền chung

Suy ra: ΔIEC= ΔIFC(cạnh huyền góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông ΔIDA và ΔIFA, ta có:

ID=IF

∠(IDA) =∠(IFA) =90o

AI cạnh huyền chung

Suy ra: ΔIDA= ΔIFA(cạnh huyền.cạnh góc vuông)

Suy ra: ∠(DAI) =∠(FAI) (hai góc tương ứng)

Vậy AI là tia phân giác góc A

5 tháng 1 2018

1.Vì các tia phân giác của các góc B và C cắt nhau tại I

\(\Rightarrow\)I là giao của các đường phân giác trong tam giác

\(\Rightarrow\)AI là tia phân giác của góc A

20 tháng 6 2019

1.

Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)

\(\widehat{IDB}=\widehat{IEB}=90^0\)

\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)

BI cạnh huyền chung

⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\widehat{IEC}=\widehat{IFC}=90^0\)

\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

         \(\widehat{IDA}=\widehat{IFA}=90^0\)

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)

21 tháng 5 2017

A B C D E I F

Kẻ ID \(\perp\) AB, IE \(\perp\) BC, IF \(\perp\) AC

Xét hai tam giác vuông IBD và IBE có:

IB: cạnh chung

\(\widehat{DBI}=\widehat{EBI}\) (gt)

Vậy: \(\Delta IBD=\Delta IBE\left(ch-gn\right)\)

\(\Rightarrow\) ID = IE (hai cạnh tương ứng) (1)

Xét hai tam giác vuông ICF và ICE có:

IC: cạnh chung

\(\widehat{FCI}=\widehat{ECI}\) (gt)

Vậy: \(\Delta ICF=\Delta ICE\left(ch-gn\right)\)

\(\Rightarrow\) IF = IE (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông AID và AIF có:

AI: cạnh chung

ID = IF (cmt)

Vậy: \(\Delta AID=\Delta AIF\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAD}=\widehat{IAF}\) (hai góc tương ứng)

Do đó: AI là tia phân giác của \(\widehat{A}\).

7 tháng 2 2016

Vẽ IH vuông góc AB, IK vuông góc AC, IE vuông góc BC (bạn đặt tên khác cũng được nhưng kẻo nhầm lẫn)

Xét 2 tam giác vuông  BIH và BIE có:

BI chung

Góc HBI = góc EBI (BI là phân giác góc B)

=> Tam giác BIH = tam giác BIE (cạnh huyền - góc nhọn)

=> IH = IE (2 cạnh tương ứng) (1)

Xét 2 tam giác vuông KCI và ECI có:

IC chung

Góc KCI = góc ECI (IC là phân giác góc C)

=> Tam giác KCI = tam giác ECI (cạnh huyền - góc nhọn)

=>IK = IE (2 cạnh tương ứng) (2)

Từ (1),(2) => IH = IK (= IE)

Xét 2 tam giác vuông AIH và AIK có:

AI chung

IH = IK (cmt)

=> Tam giác AIH = tam giác AIK (cạnh huyền - cạnh góc vuông)

=> Góc HAI = góc KAI (2 góc tương ứng)

=> AI là tia phân giác góc A

 

7 tháng 2 2016

moi hok lop 6 thoi 

16 tháng 2 2017

A B C I M N P

Gọi M,N,P lần lượt là hình chiếu của I lên các cạnh BC,BA,CA

Xét \(\Delta\)BIN và \(\Delta\)BIM có
\(\widehat{IBN}=\widehat{IBM}\)(BI là phân giác)

BI chung

=> \(\Delta\)BIN = \(\Delta\)BIM (cạnh huyền-góc nhọn)

=> IM=IN

CM tương tự có: \(\Delta\)CIP=\(\Delta\)CIM => IM=IP

=> IM=IN=IP

Xét \(\Delta\)AIN và \(\Delta\)AIP vuông tại N và P có:

IA chung

IN=IM

=>  \(\Delta\)AIN = \(\Delta\)AIP (cạnh huyền -cạnh góc vuông)

=> \(\widehat{IAN}=\widehat{IAP}\)=> IA là phân giác góc A (DPCM)

4 tháng 1 2016

là sao bạn

 

4 tháng 1 2016

4578

Mấy đại ca làm ơn tick giúp em 8 cái tick em đang rất cần

4 tháng 1 2016

5342

tick cho tui lên 120 nha

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.