Chứng minh rằng hàm số:
f x = - 2 x nếu x ≥ 0 sin x 2 nếu x < 0
Không có đạo hàm tại x = 0 nhưng đạt cực đại tại điểm đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)
\(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)
=> Điều phải chứng minh
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Ta có:f(x)=-4x3+x
Khi f(O) thì f(0)=
Cho hàm số: y = f(x)=
khi f(0) thìf(0)= -4*03+0=-12
khi f(-0.5) thì f(-0.5)=-4*(-0.5)+(-0.5)=1.5
chi tiết rồi đó nhớ chọn nha...thanks
=
Ta có : y =- f(a)=-(-4.a3+a)=4.a3+-a=a.(4.a2-1) (1)
y = f(-a)=-4.(-a)3+-a=4.a3+-a=a.(4.a2-1) (2)
Từ (1),(2) => f(-a)=-f(a)
Hàm số:
f x = - 2 x nếu x ≥ 0 sin x 2 nếu x < 0
Không có đạo hàm tại x = 0 vì:
Mặt khác, với x < 0 thì
với x > 0 thì y’ = -2 < 0
Bảng biến thiên:
Từ đó ta thấy hàm số đạt cực đại tại x = 0 và y CD = y(0) = 0.