Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Tìm số giá trị nguyên của m để phương trình f ( x 2 - 2 x ) = m có đúng 4 nghiệm thực phân biệt thuộc đoạn [ - 3 2 ; 7 2 ] .
A. 1
B. 4
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Quan sát đồ thị ta thấy hàm số y = f(x) đạt giá trị nhỏ nhất trên [-1;3] là -1 tại điểm x = =-1 và đạt giá trị lớn nhất trên[-1;3] là 4 tại điểm x = 3. Do đó M = 4, m = -1.
Giá trị M - m = 4 - (-1) = 5.
Chọn D
Dựa vào hình vẽ ta có : M = 3, m = -2. Do đó: M + m = 1
Chọn A
Dựa vào đồ thị ta thấy:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-2;1] lần lượt là f(0) và f(-2).
Hàm số đạt cực đại tại x = 0.
Hàm số nhận giá trị âm ∀ x ≠ 0 và bằng 0 tại x = 0.
2:
a: Thay x=1 vào (P), ta được:
\(y=\dfrac{1^2}{2}=\dfrac{1}{2}\)
Thay x=1 và y=1/2 vào (D), ta được:
\(m-1=\dfrac{1}{2}\)
hay m=3/2
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2+x-m=0\)
\(\text{Δ}=1^2-4\cdot\dfrac{1}{2}\cdot\left(-m\right)=2m+1\)
Để (D) cắt (P) tại hai điểm phân biệt thì 2m+1>0
hay m>-1/2
c: Để (D) tiếp xúc với (P) thì 2m+1=0
hay m=-1/2
Đáp án đúng : C