K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

19 tháng 6 2018

Đáp án C

Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)

suy ra  S H ⊥ A B C

Ta có

  S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C   = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12

30 tháng 9 2019

Đáp án C

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

30 tháng 7 2019

Đáp án D

3 tháng 8 2018

Đáp án A.

Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O

=> ABCD là hình vuông => AB//CD

=> d(AB;SC) = d(AB;(SCD))  = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của ABCD).

Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:

11 tháng 6 2019

6 tháng 9 2019

Đáp án là C


18 tháng 11 2017

Đáp án C

1 tháng 5 2017