Cho các số phức z thỏa mãn |z|=2và w=1- 3 i+(3-4i)z. Tìm giá trị lớn nhất của |w|
A. 8.
B. 9.
C.10.
D. 12.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đặt theo giả thiết ta có:
Tổng quát: Với 2 số thực z 1 , z 2 thõa mãn
Khi đó
Đáp án C.
Từ giả thiết, ta có:
z − 3 + 4 i = 2 ⇔ 2 z − 6 + 8 i = 4 ⇔ 2 z + 1 − i − 7 + 9 i = 4
mà w = 2 z + 1 − i .
Khi đó:
w − 7 + 9 i = 4 ⇒ w max = 7 2 + 9 2 + 4 = 130 + 4 w min = 7 2 + 9 2 − 4 = 130 − 4 .
\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)
\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)
\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)
Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)
\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\)
\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)
Đáp án B.
Đặt suy ra tập hợp các điểm M(z) = (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5
Ta có
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Do đó