Cho thỏa mãn z ∈ C thỏa mãn 2 + i z = 10 z + 1 - 2 i . Biết tập hợp các điểm biểu diễn cho số phức w = 3 - 4 i z - 1 + 2 i là đường tròn I, bán kính R. Khi đó
A. I - 1 ; - 2 , R = 5
B. I 1 ; 2 , R = 5
C. I - 1 ; 2 , R = 5
D. I 1 ; - 2 , R = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đặt
Đặt Số phức w được biểu diễn bởi điểm M(x';y')
Em có:
Em có:
Mà x = 3y + 2 nên w =
Vậy số phức w được biểu diễn bởi đoạn thẳng: x + 7y + 9 = 0
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
2 + i z = 10 z + 1 - 2 i
⇔ 2 z - 1 + z + 2 i = 10 z 2 z
Bình phương modun của số thức bên trái và bên phải bằng nhau ta có:
⇔ 2 z - 1 + z + 2 i = 10 z 2 z
= 10 z 2 ⇔ 5 z 2 + 5 = 10 z 2 ⇒ z = 1
Đặt w = x + yi ⇒ w = (3 - 4i )z+2i
⇔ (x + 1 ) + ( y - 2 )i = ( 3 - 4i )z
⇒ x + 1 2 + y - 2 2 = 25
Vậy I ( -1;2 ), R = 5
Đáp án cần chọn là C
Đáp án C
Đặt z = x + yi , x ; y ∈ ℝ .
Đặt w = x ' + y ' i , x ' , y ' ∈ ℝ . Số phức w được biểu diễn bởi điểm M x ' ; y ' .
Vậy số phức w được biểu diễn bởi đoạn thẳng: x + 7 y + 9 = 0. .
Đáp án C