Tìm tập xác định của các hàm số
y = - x 5 + 7 x - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
1.Ý C
Hàm số có nghĩa khi \(x^2+14x+45\ne0\Leftrightarrow x\ne\left\{-5;-9\right\}\)
\(\Rightarrow D=R\backslash\left\{-5;-9\right\}\)
2. Ý D
Hàm số có nghĩa khi \(\left\{{}\begin{matrix}x+7\ge0\\x^2+6x-16\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-7\\x\ne\left\{2;-8\right\}\end{matrix}\right.\)
\(\Rightarrow D=\)\([-7;+ \infty) \)\(\backslash\left\{2\right\}\)
ĐK : \(x^2+14x+45\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-5\\x\ne-9\end{cases}}\)
\(TXĐ:D=R\backslash\left\{-5;-9\right\}\)
Chọn C
Hàm số xác định khi x + 3 ≠ 0 (luôn thỏa mãn với mọi x ≥ 1).
Vậy hàm số luôn xác định trên [1; +∞).
+ Xét trên (–∞; 1), .
Hàm số xác định khi 2 – x ≥ 0 ⇔ x ≤ 2 (Luôn thỏa mãn với mọi x < 1).
Vậy hàm số luôn xác định trên (–∞; 1).
Kết luận: Hàm số xác định trên R.
Đáp án D.
Ta có hàm số y = x − 1 − 7 có lũy thừa với số mũ nguyên âm là –7 nên cơ số x − 1 ≠ 0 ⇔ x ≠ 1
D = R