Cho tam giác ABC cân tại A,cho tam giác cân ABC cân tại A, M nằm trên BC, từ M kẻ MD vuông với AB, D thuộc AB.Cũng từ M kẻ ME vuông với AC, E thuộc AC.Kẻ BH vuông với AC, H nằm trên AC.CMR: BH=MD+ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ nhé
Từ A ta kẻ BI vuông góc với ME,cắt ME tại I.Dễ dàng chứng minh được tam giác BHI bằng tam giác EIH nên BH = EI
Mà EI = ME + MI.Vậy để chứng minh MD+ME=BH ta chỉ cần chứng minh MI=MD
Do BI vuông góc EI,EI vuông góc với AC nên BI song song AC
Vậy\(\widehat{IBC}=\widehat{ACB}\)hai góc so le trong
Do tam giác ABC cân tại A nên \(\widehat{ABC}\)= \(\widehat{ACB}\)Suy ra: \(\widehat{IBC}=\widehat{ABC}\)
Xét tam giác BMD và tam giác BMI:
Có BM chung:
\(\widehat{IBC}=\widehat{ABC}\)
\(\widehat{D}=\widehat{I}\)= \(90\)độ
Vậy tam giác BMD=BMI ch.gn
Suy ra: IM=MD. Vậy ta có điều phải chứng minh