K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Chọn A

8 tháng 12 2019

22 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có hai mặt phẳng song song là: (Ax, AD) // (By, BC)

Hai mặt phẳng này bị cắt bởi mặt phẳng (β) nên ta suy ra các giao tuyến của chúng phải song song nghĩa là A′D′ // B′C′.

Tương tự ta chứng minh được A′B′ // D′C′. Vậy A', B', C', D' là hình bình hành. Các hình thang AA'C'C và BB'D'D đều có OO' là đường trung bình trong đó O là tâm của hình vuông ABCD và O' là tâm của hình bình hành A',B',C',D'. Do đó: AA′ + CC′ = BB′ + DD′ = 2OO′

b) Muốn hình bình hành A',B',C',D' là hình thoi ta cần phải có A'C' ⊥ B'D'. Ta đã có AC ⊥ BD. Người ta chứng minh được rằng hình chiếu vuông góc của một góc vuông là một góc vuông khi và chỉ khi góc vuông đem chiếu có ít nhất một cạnh song song với mặt phẳng chiếu hay nằm trong mặt chiếu. Vậy A', B', C', D' là hình thoi khi và chỉ khi A'C' hoặc B'D' song song với mặt phẳng (α) cho trước. Khi đó ta có AA' = CC' hoặc BB' = DD'.

c) Muốn hình bình hành A', B', C', D' là hình chữ nhật ta cần có A'B' ⊥ B'C', nghĩa là A'B' hoặc B'C' phải song song với mặt phẳng (α)(α). Khi đó ta có AA' = BB' hoặc BB' = CC', nghĩa là hình bình hành A', B', C', D' có hai đỉnh kề nhau cách đều mặt phẳng (α) cho trước.

a) Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)

Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)

Ta có: \(\widehat{B}+\widehat{C}=180^0\)

mà hai góc này là hai góc trong cùng phía

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)

hay ABCD là hình thang

4 tháng 6 2017

Đáp án cần chọn là: C

Vì  A ^ ÷ B ^ ÷ C ^ ÷ D ^   =   4 ÷ 3 ÷ 2 ÷ 1 nên ta có

A 4 = B 3 = C 2 = D 1 = A + B + C + D 4 + 3 + 2 + 1 = A + B + C + D 10

( tính chất tỉ lệ thức )

Mà  A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có

A 4 = B 3 = C 2 = D 1 = A + B + C + D 10 = 360 0 10 = 36 0

⇒ A ^ = 4 × 36 ° = 144 ° ; B ^ = 3 × 36 ° = 108 ° ; C ^ = 2 × 36 ° = 72 ° ;   D ^ = 1 × 36 ° = 36 °

1 tháng 12 2018

Đáp án cần chọn là: A

Vì số đo của các góc  A ^ ;   B ^ ;   C ^ ;   D ^ tỉ lệ thuận với 4; 3; 5; 6 nên ta có:

A 4 = B 3 = C 5 = D 6 = A + B + C + D 4 + 3 + 5 + 6 = A + B + C + D 18

( tính chất dãy tỉ số bằng nhau )

Mà  A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có

A 4 = B 3 = C 5 = D 6 = A + B + C + D 18 = 360 0 18 = 20 0

⇒ A ^ = 4 × 20 ° = 80 °   ;   B ^ = 3 × 20 ° = 60 ° C ^ = 5 × 20 ° = 100 °   ;   D ^ = 6 × 20 ° = 120 °

Nên số đo các góc  A ^ ;   B ^ ;   C ^ ;   D ^ lần lượt là  80 ° ;   60 ° ;   100 ° ;   120 °