K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

Đáp án A
Một ADN tự sao k lần liền cần số nuclêôtit tự do là: Nmt = N × ( 2 k  -1)

28 tháng 1 2016

de

28 tháng 1 2016

là 1 số chính phương

17 tháng 12 2017

a)

\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)

\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)

\(n-1=1\Rightarrow n=2\)

\(n-1=2\Rightarrow n=3\)

\(n-1=4\Rightarrow n=5\)

Vậy \(n\in\left\{2;3;5\right\}\)

28 tháng 1 2020

LOL GAMER   (*-*)

28 tháng 1 2020

đáng lẽ n = 0 mới được chớ

7 tháng 3 2016

Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\)  với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có

\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)

Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\).  Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\).  Suy ra  \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\)   Khi đó A=1+4=5 là số nguyên tố.

7 tháng 3 2016

^^ đang nghĩ

2 tháng 3 2016

Câu hỏi lớp 9 cậu đăng lên h.vn thì tốt hơn

2 tháng 3 2016

Minh Triều em nghĩ anh tìm các số nguyên tố là được. Tính cũng dễ hơn.