K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) * Cách 1.

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Do Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( hai góc nội tiếp chắn hai cung bằng nhau).

Suy ra: BC là tia phân giác của góc Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 .

Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

17 tháng 5 2019

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

 * Cách 1.

Ta có: AD vuông BC tại A' nên  A A ' B ^ = 90 o

Vì  A A ' B ^ là góc có đỉnh bên trong đường tròn nên:

Tương tự, vì BE vuông góc AC tại B' nên ta có:

E B ' C ^ là góc có đỉnh nằm trong đường tròn

Ta có:(1)

Và (2)

Tà (1) và (2) 

Đây là hai góc nội tiếp chắc hai cung DC và CE nên:

26 tháng 9 2018

Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)

Điểm C nằm trên đường trung trực của HD nên CH=CD.

21 tháng 2 2017

Do Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( hai góc nội tiếp chắn hai cung bằng nhau).

Suy ra: BC là tia phân giác của góc Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 .

Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.

loading...  loading...  

17 tháng 4 2017

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 3 2020

A B C D H E M N

a) Gọi M,N lần lượt là giao điểm của AD với BC và BE với AC

Các \(\hept{\begin{cases}\widehat{ANB}\\\widehat{AMB}\end{cases}}\)là 2 góc có đỉnh nằm bên trong đường tròn nên ta có:

\(\widehat{ANB}=\frac{1}{2}\)(sđ \(\widebat{EC}\)+ sđ \(\widebat{AB}\)) =90o (vì BE_|_ AC)

\(\widehat{AMB}=\frac{1}{2}\)(sđ \(\widebat{DC}\)+ sđ \(\widebat{AB}\))=90o (vì AD _|_ BC)

Vậy ta có: \(sđ\widebat{CE=sđ\widebat{CD}}\)\(\Leftrightarrow CD=CE\left(đpcm\right)\)

Nguồn: loigiaihay.com

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

18 tháng 2 2021

cần câu d :v