K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc  80 º trên đoạn thẳng BC (tương tự bài 46) :

    Dựng tia Bx sao cho Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

    Dựng tia By ⊥ Bx.

    Dựng đường trung trực của BC cắt By tại O.

    Dựng đường tròn (O; OB).

    Cung lớn BC chính là cung chứa góc 80 º  dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 2cm:

    Lấy D là trung điểm BC.

    Trên đường trung trực của BC lấy D’ sao cho DD’ = 2cm.

    Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

    Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 80 º  dựng trên đoạn BC

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 2cm

⇒ AH = DD’ = 2cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.  

4 tháng 4 2018

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 80º trên đoạn thẳng BC (tương tự bài 46) :

    Dựng tia Bx sao cho Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

    Dựng tia By ⊥ Bx.

    Dựng đường trung trực của BC cắt By tại O.

    Dựng đường tròn (O; OB).

    Cung lớn BC chính là cung chứa góc 800 dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 2cm:

    Lấy D là trung điểm BC.

    Trên đường trung trực của BC lấy D’ sao cho DD’ = 2cm.

    Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

    Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 80o dựng trên đoạn BC

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 2cm

⇒ AH = DD’ = 2cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.  

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

Câu 5: C,D

Câu 6; B

Câu 7: A

Câu 8:B

6 tháng 3 2022

 C,D

 B

 A

B

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

16 tháng 1 2022

bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx

17 tháng 4 2017

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trình tự dựng gồm các bước sau:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 80 trên đoạn thẳng BC (cung BmC).

- Trên đường vuông góc với BC tại I(I là trung điểm BC), chọn điểm K sao cho IK = 2cm. Từ K dựng đường thẳng vuông góc với IK. Đường thẳng này cắt cung chứa góc BmC tại A và A'.

ΔABC (hoặc ΔA'BC) là tam giác thỏa mãn yêu cầu đề bài.