Có bao nhiêu giá trị nguyên của m để phương trình cos2x-4cosx-m= 0 có nghiệm
A. 6
B. 7
C. 9
D. 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: P T ⇔ 2 cos 2 x − 1 − 4 cos x = m
→ t − cos x f t = 2 t 2 − 4 t − 1 = m t ∈ − 1 ; 1
Khi đó: f ' t = 4 t − 4 = 0 ⇔ t = 1
Lại có: f 1 = 5 ; f 1 = − 3 do đó PT đã cho có nghiệm
⇔ m ∈ − 3 ; 5 ⇒ có 9 giá trị nguyên của m
Đáp án C
Ta có
cos 2 x − 4 cos x − m = 0 ⇔ 2 cos 2 x − 1 − 4 cos x − m = 0 ⇔ 2 cos 2 x − 4 cos x − 1 = m *
Đặt t = cos x ∈ − 1 ; 1 , khi đó * ⇔ m = f t = 2 t 2 − 4 t − 1 I .
Suy ra f t là hàm số nghịch biến trên − 1 ; 1 nên để I có nghiệm − 3 ≤ m ≤ 5
Vậy có tất cả 9 giá trị nguyên của tham số m cần tìm
\(\Leftrightarrow2cos^2x+4cosx-1=-m\)
Xét \(f\left(x\right)=2cos^2x+4cosx-1\)
\(f\left(x\right)=2cos^2x+4cosx+2-3=2\left(cosx+1\right)^2-3\ge-3\)
\(f\left(x\right)=2cos^2x+4cosx-6+5=2\left(cosx-1\right)\left(cosx+3\right)+5\le5\)
\(\Rightarrow-3\le-m\le5\Rightarrow-5\le m\le3\)
Đáp án B
PT
Đặt
Để (1) có nghiệm thì (2) có nghiệm có nghiệm
Suy ra có nghiệm
Xét hàm số
Lập bảng biến thiên hàm số
Đáp án B
PT
Đặt
Để (1) có nghiệm thì (2) có nghiệm có nghiệm
Suy ra có nghiệm
Xét hàm số
Lập bảng biến thiên hàm số
Đáp án C.
Áp dụng bất đẳng thức Bunhiacopxki, ta có:
m . s inx+4cosx 2 ≤ m 2 + 4 2 sin 2 x + c os 2 x = m 2 + 16.
Nên để phương trình đã cho có nghiệm ⇔ 3 m − 5 2 ≤ m 2 + 16 ⇔ 3 m 2 20 m + 9 ≤ 0.
Kết hợp với m ∈ ℤ , ta được m = 1 ; 2 ; 3 ; 4 ; 5 ; 6 là giá trị cần tìm.
Chọn đáp án C
Bảng biến thiên:
Từ bảng biến thiên ta có phương trình (1) đã cho có nghiệm
Vậy có 9 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đáp án C.
Ta có