Tọa độ tất cả các điểm thuộc đồ thị (C) của hàm số y = x + 1 x - 2 sao cho tổng khoảng cách từ điểm đó đến 2 tiệm cận là nhỏ nhất là
A. (1;1)
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M a; a + 2 a − 2 thuộc đồ thị hàm số
d ( M;TCD ) = a − 2
d ( M;TCN ) = 4 a − 2
Tổng khoảng cách= a − 2 + 4 a − 2 ≥ 2 a − 2 . 4 a − 2 = 4
Dấu bằng xảy ra khi a − 2 = 4 a − 2 ⇔ a=4 a=0 do hoành độ dương nên a=4
Vậy M(4;3)
Đáp án B
Gọi M a; a + 2 a − 2 thuộc đồ thị hàm số
d ( M;TCD ) = a − 2
d ( M;TCN ) = 4 a − 2
Tổng khoảng cách = a − 2 + 4 a − 2 ≥ 2 a − 2 . 4 a − 2 = 4
Dấu bằng xảy ra khi a − 2 = 4 a − 2 ⇔ a=4 a=0 do hoành độ dương nên a=4
Vậy M(4;3)
Đáp án A
Gọi M a ; 2 a + 2 a − 1 , tiệm cận đứng x = 1 ; tiệm cận ngang y = 2 .
Khi đó d = d M ; T C D + d M ; T C N = a − 1 + 4 a − 1 ≥ 4
Dấu bằng xảy ra ⇔ a − 1 2 = 4 ⇔ a = 3 a = − 1 ⇒ M − 1 ; 0 M 3 ; 4 .
Đáp án A
Đồ thị hàm số y = 2 x + 2 x − 1 C có hai đường tiệm cận là x = 1 d 1 ; y = 2 d 2 .
Gọi M ∈ C ⇒ M m ; 2 m + 2 m − 1 → d M ; d 1 = m − 1 d M ; d 2 = 2 m + 2 m − 1 − 2 = 4 m − 1
Khi đó d M ; d 1 + d M ; d 2 = m − 1 + 4 m − 1 ≥ 2 m − 1 . 4 m − 1 = 4 .
Dấu “=” xảy ra ⇔ m − 1 = 4 m − 1 ⇔ m − 1 2 = 4 ⇔ m = 3 m = − 1 .
Vậy M 3 ; 4 M − 1 ; 0 .
Đáp án A
Gọi
với a ≢ 1 .
Tiệm cận đứng của (C) là x-1.
Ta có . Vậy .
Đáp án D