l i m x → + ∞ x x 2 + 2 - x bằng:
A. +∞
B. 2
C. 1
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-y-2\right|+\left|y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y-2\right|\ge0\forall x;y\\\left|y+3\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-2\right|+\left|y+3\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-y-2\right|=0\Rightarrow x-\left(-3\right)-2=0\Rightarrow x+1=0\Rightarrow x=-1\\\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\end{matrix}\right.\)
\(\left|x-2007\right|+\left|y-2008\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2007\right|\ge0\forall x\\\left|y-2008\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-2007\right|+\left|y-2008\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2007\right|=0\Rightarrow x-2007=0\Rightarrow x=2007\\\left|y-2008\right|=0\Rightarrow y-2008=0\Rightarrow y=2008\end{matrix}\right.\)
\(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|=0\)
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|\ge0\forall x\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|=0\Rightarrow\dfrac{1}{6}+\dfrac{3}{4}x=0\Rightarrow\dfrac{3}{4}x=-\dfrac{1}{6}\Rightarrow x=-\dfrac{2}{9}\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|=0\Rightarrow\dfrac{29}{34}+\dfrac{23}{13}x=0\Rightarrow\dfrac{23}{13}x=-\dfrac{29}{34}\Rightarrow x=-\dfrac{377}{782}\end{matrix}\right.\)
\(\left|x-y-5\right|+\left|y-2\right|\le0\)
\(\left\{{}\begin{matrix}\left|x-y-5\right|\ge0\forall x;y\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|+\left|y-2\right|\le0\\\left|x-y-5\right|+\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\Rightarrow x-2-5=0\Rightarrow x=7\\\left|y-2=0\right|\Rightarrow y=2\end{matrix}\right.\)
\(\left|3x+2y\right|+\left|4y-1\right|\le0\)
\(\left\{{}\begin{matrix}\left|3x+2y\right|\ge0\forall x;y\\ \left|4y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|3x+2y\right|+\left|4y-1\right|\ge0\\\left|3x+2y\right|+\left|4y-1\right|\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x+2y\right|=0\Rightarrow3x+\dfrac{1}{2}=0\Rightarrow3x=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{6}\\\left|4y-1\right|=0\Rightarrow4y=1\Rightarrow y=\dfrac{1}{4}\end{matrix}\right.\)
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
a, vì |x| ≥ 0 và |x-1| ≥ 0
dấu bằng xảy ra khi và chỉ khi |x|=0 và |x-1|=0
=> x=0 và x=1
Bài 2:
a: =>x+32=0
=>x=-32
b: =>x-1=0
=>x=1
c: =>45-x=0 hoặc x=0
=>x=0 hoặc x=45
d: =>x-12=0 hoặc x+27=0
=>x=12 hoặc x=-27
Bài 1:
a/ \(\Leftrightarrow\left(\left[x\right]-1\right)\left(\left[x\right]-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[x\right]=1\\\left[x\right]=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le x< 2\\4\le x< 5\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(\left[x\right]-2\right)\left(\left[x\right]-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[x\right]=2\\\left[x\right]=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\4\le x< 5\end{matrix}\right.\)
Bài 2:
\(\Leftrightarrow2\left[x\right]=\left[x\right]+\left\{x\right\}+2\left\{x\right\}\)
\(\Leftrightarrow\left[x\right]=3\left\{x\right\}\)
\(\Rightarrow0\le\left[x\right]< 3\)
- Với \(\left[x\right]=0\Rightarrow\left\{x\right\}=0\Rightarrow x=0\)
- Với \(\left[x\right]=1\Rightarrow\left\{x\right\}=\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
- Với \(\left[x\right]=2\) \(\Rightarrow\left\{x\right\}=\frac{2}{3}\Rightarrow x=\frac{8}{3}\)
Bài 3:
\(A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)
\(A< \frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=2\)
\(\Rightarrow1< A< 2\Rightarrow\left[A\right]=1\)
a, Đặt (x2 +x ) = t ta có:
=> t2 + 4t - 12 = 0
=> ( t + 2)2 - 16 = 0
=> ( t + 2)2 - 42 = 0
=> ( t -2)( t + 6) = 0
=>\(\left[{}\begin{matrix}t-2=0\\t+6=0\end{matrix}\right.\)
Thay t = x2 + x
- x2 + x -2 = 0 => (x+2)(x-1) = 0 => \(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
- x2 + x + 6 = 0 => (x+3)(x-2) = 0 => \(\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Chọn C
lim x → + ∞ x x 2 + 2 − x = lim x → + ∞ x x 2 + 2 − x 2 x 2 + 2 + x = lim x → + ∞ 2 x x 2 + 2 + x = lim x → + ∞ 2 1 + 2 x 2 + 1 = 1