tìm số tự nhiên n sao cho
n^2+2n+18 là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)
Suy ra (n2 + 2n + 1) + 11 = k2
Suy ra k2 – (n+1)2 = 11
Suy ra (k+n+1)(k-n-1) = 11
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1
+ Với k+n+1 = 11 thì k = 6
Thay vào ta có : k – n - 1 = 1
6 - n - 1 =1 Suy ra n = 4
Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)
\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)
Vì \(a\inℕ;n\inℕ\) nên \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố
\(\Rightarrow a+n+1=17\)(*)
và a - n - 1 = 1 hay a = n + 2
Thay a = n +2 vào (*) tính được n = 7
\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.
Khi đó \(n^2+2n+18=m^2\)
\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)
Do \(m,n\)là số tự nhiên nên
\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)
Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)
\(=81=9^2\)là số chính phương (thỏa mãn).
Vậy \(n=7\).
\(a,n+20⋮n+2\)
\(\Leftrightarrow n+2+18⋮n+2\)
\(\Leftrightarrow18⋮n+2\)
Vì n là stn
=> n + 2> 2
Ta có bảng:
n + 2 | 2 | 3 | 6 | 9 | 18 |
n | 0 | 1 | 4 | 7 | 16 |
Vậy.........
\(b,2n+18⋮n+3\)
\(\Leftrightarrow2\left(n+3\right)+12⋮n+3\)
\(\Leftrightarrow12⋮n+3\)
Vì n là stn => n + 3 > 3
Ta có bảng
n + 3 | 3 | 4 | 6 | 12 |
n | 0 | 1 | 3 | 9 |
Vậy
a) \(n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
b) \(\left(n-1\right)\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
\(\Rightarrow n\in\left\{2;3;5;8;15;29\right\}\)
c) \(\left(2n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow2n\in\left\{0;1;2;5;8;17\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;4\right\}\)
d) \(n\left(n+2\right)=8\)
\(\Leftrightarrow n^2+2n-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)