Tìm m để đồ thị hàm số y = x 4 - 2 m x 2 + 1 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 4.
A. m = 16 5
B. m = 16 3
C. m = 1
D. m = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Có y ' = 4 x 3 − 4 m x ; y ' = 0 ⇔ x = 0 x = m x = − m
(xét trong trường hợp nó có 3 cực trị thì m>0)
Khi đó 3 điểm cực trị là;
A 0 ; 2 ; B m ; 2 − m 2 ; C − m ; 2 − m 2 .
A,B,C lập thành một tam giác có diện tích bằng 1 nếu
S A B C = 1 ⇔ 1 2 A H . B C = 1 ⇔ 1 2 2 m − m 2 = 1 ⇔ m = 1.
\(y'=4x^3-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=m\end{matrix}\right.\)
Hàm có 3 cực trị khi \(m>0\)
Gọi 3 cực trị là A; B; C với \(\left\{{}\begin{matrix}A\left(0;m^4+2m\right)\\B\left(\sqrt{m};2m\right)\\C\left(-\sqrt{m};2m\right)\end{matrix}\right.\)
Tam giác ABC luôn cân tại A, gọi H là trung điểm BC \(\Rightarrow H\left(0;2m\right)\)
\(AH=\left|y_A-y_H\right|=m^4\) ; \(BC=\left|x_B-x_C\right|=2\sqrt{m}\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.m^4.2\sqrt{m}=4\)
\(\Leftrightarrow m^9=16\Rightarrow m=\sqrt[3]{2}\)
Để hàm số y=(m-2)x+4+m là hàm số bậc nhất thì \(m-2\ne0\)
hay \(m\ne2\)
a) Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-2)x+4+m, ta được
\(\left(m-2\right)\cdot1+4+m=2\)
\(\Leftrightarrow m-1+4+m=2\)
\(\Leftrightarrow2m+3=2\)
\(\Leftrightarrow2m=-1\)
hay \(m=-\dfrac{1}{2}\)(nhận)
Vậy: Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì \(m=-\dfrac{1}{2}\)
a. Hàm có 3 cực trị \(\Rightarrow m< 0\)
\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)
Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu
Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy
Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\) là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)
\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)
Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)
\(\Rightarrow\) I trùng trung điểm BC
\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)
b.
Từ câu a ta thấy khoảng cách giữa 2 cực đại là:
\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)
Đáp án A
Tam giác ABC cân tại A, do đó diện tích tam giác ABC là