tim x:x4=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3+4x^2-3x+2=0\\ \Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+\left(3x^2-3x+2\right)=0\\ \Leftrightarrow x^2\left(x-1\right)^2+\left(3x^2-3x+2\right)=0\)
Vì \(x^2\left(x-1\right)^2\ge0\) và dễ dàng chứng minh được \(3x^2-3x+2>0\) nên pt vô nghiệm
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |