Tìm m để đồ thị hàm số y = x + m m x + 1 có đường tiệm cận ngang
A. m ≠ 0
B. m ≠ ±1
C. m ≠ 1
D. Cả A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để hàm số nghịch biến trên R thì:
$a+2<0$
$\Leftrightarrow a< -2$
b.
Để $(d)$ đi qua $M(-1;-4)$ thì:
$y_M=(a+2)x_M-a+1$
$\Leftrightarrow -4=(a+2)(-1)-a+1$
$\Leftrightarrow a=\frac{3}{2}$
* Nếu m = 0 thì y = x nên hàm số đã cho không có tiệm cận ngang.
* Nếu m = 1 thì y = 1 nên hàm số không có tiệm cận ngang.
* Nếu m = -1 thì y = -1 nên hàm số không có tiệm cận ngang.
Vậy để hàm số đã cho có tiệm cận ngang thì m ≠ 0 và m ≠ ±1;
Chọn D