Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 2a. Một hình trụ có hai đáy là hai hình tròn nội tiếp trong hai hình vuông ABCD và A’B’C’D’. Tính thể tích của khối lăng trụ tạo nên từ hình trụ trên.
A . 2 πa 3
B . πa 3
C . 2 2 πa 3
D . 4 πa 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn đường tròn ngoại tiếp hình vuông ABCD cạnh a như hình vẽ
Khi đó: Tâm đường tròn là giao điểm 2 đường chéo
Hình trụ có chiều cao h = a và bán kính đáy
Do đó ta có: S xq = 2 πrh = πa 2 2
Đáp án là B.
+ Ta có: R C = a 3 ⇒ V C = 4 3 π .3 3 a 3 = 4 π a 3 3 .
+ R T = a 2 ⇒ V T = 2 a .. π 2 a 2 = 4 π a 3
Vậy V C V T = 3 .
Đáp án C
Do hình trụ và hình lập phương có cùng chiều cao nên ta chỉ cần chú ý đến mặt đáy như hình vẽ bên. Đường tròn đáy của hình trụ có bán kính bằng một nửa đường chéo của hình vuông
Do đó thể tích hình trụ cần tìm bằng
Đáp án A.
Hình trụ đó có chiều cao h = 2a, bán kính r = a