Cho hình thang vuông ABCD (AB//CD). Gọi E,F theo thứ tự là các điểm đối xứng của điểm B và điểm A qua đường thẳng DC; G,H theo thứ tự là các điểm đối xứng của điểm C và điểm E qua đường thẳng AD
a)Chứng minh điểm D là trung điểm của BH
bChứng minh AH // BF và CH // BG
a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác
Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác
Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)
Do đó B,H,D thẳng hàng
Mà \(DH=DE=DB\) (DHE và DEB cân tại D)
Vậy D là trung điêm BH