K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Bạn lưu ý không đăng lặp bài gây loãng box toán.

13 tháng 11 2021

TH1: \(x+y+z+t\ne0\) 

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\ \Rightarrow x=y=z=t\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)

TH1: \(x+y+z+t=0\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)

13 tháng 11 2021

Tham khảo: https://hoc24.vn/cau-hoi/cho-bieu-thuc-pdfracxyztdfracyztxdfracztxydfractxyz-tinh-gia-tri-bieu-thuc-p-biet-dfracxyztdfracyzt.3023321885549

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
Nếu $x+y+z+t=0$ thì:

$P=\frac{-(z+t)}{z+t}+\frac{-(t+x)}{t+x}+\frac{-(x+y)}{x+y}+\frac{-(y+z)}{y+z}$

$=-1+(-1)+(-1)+(-1)=-4$

Nếu $x+y+z+t\neq 0$ thì áp dụng TCDTSBN:

$\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3(x+y+z+t)}=\frac{1}{3}$

$\Rightarrow 3x=y+z+t; 3y=z+t+x; 3z=t+x+y; 3t=x+y+z$

$\Rightarrow x=y=z=t$

$\Rightarrow P=1+1+1+1=4$

 

18 tháng 1 2022

TH1: \(x+y+z+t\ne0\) 

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\ \Rightarrow x=y=z=t\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)

TH2: \(x+y+z+t=0\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)

1 tháng 8 2017

Ta có :

\(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{x+z+t}+1=\dfrac{z}{x+y+t}+1\)\(=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{x+y+t}=\dfrac{x+y+z+t}{x+z+t}=\dfrac{x+y+z+t}{x+y+z}\)

\(=\dfrac{x+y+z+t}{x+y+z}\)

* Nếu \(x+y+z+t=0\)

\(\Rightarrow x+y=-\left(z+t\right)\)

\(y+z=-\left(t+x\right)\)

Thay vào A ta được: \(P=-1+-1=-2\)

*Nếu \(x+y+z+t\ne0\)

\(\Rightarrow x+y+t=x+y+z\Rightarrow t=z\)

Làm tương tự tự ta suy ra được \(x=y=z=t\)

=> \(x+y=z+t\)

\(y+z=t+x\)

Thay vào A ta được A= 1+1=2

Vậy... tik mik nha !!!

1 tháng 8 2017

Xét:

\(\dfrac{x}{y+z+t}+1=\dfrac{y}{x+t+z}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Leftrightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

+ TH1: Nếu \(x+y+z+t\ne0\Rightarrow x=y=z=t\Rightarrow P=4\)

+ TH2: Nếu \(x+y+z+t=0\Rightarrow P=-4\)

Vậy \(\left[{}\begin{matrix}P=4\\P=-4\end{matrix}\right.\)

15 tháng 9 2017

Theo dãy tỉ số = nhau ta có :

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3x+3y+3z+3t}=\dfrac{1}{3}\)

\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Leftrightarrow3x=y+z+t\) (1)

\(\dfrac{y}{z+t+x}=\dfrac{1}{3}\Leftrightarrow3y=z+t+x\) (2)

\(\dfrac{z}{t+x+y}=\dfrac{1}{3}\Leftrightarrow3z=t+x+y\) (3)

\(\dfrac{t}{x+y+z}=\dfrac{1}{3}\Leftrightarrow3t=x+y+z\) (4)

Từ (1) và (2) => 3x + 3y = x + y + 2(z+t) => 2(x+y) = 2(z+t) => x + y = z + t (5)

Từ (2) và (3) => 3y + 3z = y + z + 2(t + x) => 2(y+z) = 2(t+x) = > y + z = t + x

Vậy P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}=4\)

15 tháng 9 2017

Khi nào cần gì thì hỏi nhé ok

12 tháng 4 2017

Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

\(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó

\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)

12 tháng 4 2017

hình như bạn làm nhầm rùi thì phải x+y+z+t khác 0 rồi sao lại x +y+z+t = 0 nữa zậy bạn