Cho số phức z thỏa mãn z - 3 - 4 i = 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = z + 2 2 - z - i 2 . Tính môđun của số phức w = M + mi ?
A. w = 2315
B. w = 1258
C. w = 3 137
D. w = 2 309
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
z = x + y i , ( x , y ∈ ℝ ) ⇒ P = x + 2 2 + y 2 − x 2 - y - 1 2 = 4 x + 2 y + 3 z − 3 − 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cost thỏa mãn ( x − 3 ) 2 + ( y − 4 ) 2 = 5
Đáp án B
z = x + y i , ( x , y ∈ R ) ⇒ P = x + 2 2 + y 2 - x 2 - y - 1 2 = 4 x + 2 y + 3 z - 3 - 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cos t thỏa mãn x - 3 2 + y - 4 2 = 5
⇒ P = 4 5 sin t + 2 5 cos t + 23 f t = 4 5 sin t + 2 5 cos t f t 10 = 2 5 5 sin t + 5 5 cos t
Đ ặ t c o s u = 2 5 5 sin u = 5 5 ⇒ f t 10 = sin t + u ⇒ - 1 ≤ f t 10 ≤ 1 ⇒ - 10 ≤ f t ≤ 10 ⇒ 13 ≤ P ≤ 33 ⇒ w = 1258
Đáp án B
Đặt suy ra tập hợp các điểm M(z)= (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R= 5 .
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Đáp án C
Đặt z = x + yi , ( x ; y ∈ ℝ ) . Số phức z được biểu diễn bởi điểm N(x;y)
Số phức z 1 = − 2 + i được biểu diễn bởi điểm A(-2;1)
Số phức z 2 = 5 − 6 i được biểu diễn bởi điểm B(5;-6)
Ta có: z + 2 − i + z − 5 + 6 i = 7 2 ⇔ NA + NB = 7 2 . Mà AB = 7 2 nên N thuộc đoạn thẳng AB.
Đường thẳng AB : qua A − 2 ; 1 qua B 5 ; − 6 => phương trình đường thẳng AB là: x + y +1 = 0.
Vì N(x;y) thuộc đoạn thẳng AB nên x + y +1 = 0, x∈ − 2 ; 5 .
Ta có:
Đáp án C
Đặt Số phức z được biểu diễn bởi điểm N(x;y)
Số phức được biểu diễn bởi điểm A(-2;1)
Số phức được biểu diễn bởi điểm B(5;-6)
được biểu diễn bởi điểm
Ta có: |z + 2 - i| + |z - 5 + 6i| = 7 2 Mà AB = 7 2 nên N thuộc đoạn thẳng AB.
Đường thẳng AB:
=> phương trình đường thẳng AB là: x + y + 1 = 0
Vì N(x;y) thuộc đoạn thẳng AB nên x + y +1 = 0, x ∈ [-2;5]
Ta có:
Xét trên [-2;5] ta có: f'(x) = 4(x-1)
Ta có:
Vậy M + m = 4 2
Đáp án A
Đặt z = x + yi
Có
TH1:
Xét hàm số: trên
Có
Ta có:
TH2:
Xét hàm số: trên
Ta có:
Đáp án B.
Đặt z = x + y i x , y ∈ ℝ suy ra tập hợp các điểm M(z) = (x,y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5 .
Ta có P = z + 2 2 - z - i 2 = x + 2 + y i 2 - x + y - 1 i 2 = x + 2 2 + y 2 - x 2 - y - 1 2
= x 2 + y 2 + 4 x + 4 - x 2 - y 2 + 2 y - 1 = 4 x + 2 y + 3 → ∆ : 4 x + 2 y + 3 - P = 0 .
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung ⇔ d I ; ∆ ≤ R .
⇔ 4 . 3 + 2 . 4 + 3 - P 4 2 + 2 2 ≤ 5 ⇔ 23 - P ≤ 10 ⇔ - 10 ≤ 23 - P ≤ 10 ⇔ 13 ≤ P ≤ 33 .
Do đó, m a x P = 33 m i n P = 13 → w = M + m i = 33 + 13 i ⇒ w = 1258 .