Tập hợp điểm biểu diễn hình học của số phức w = 1 − i z với z là số phức thỏa mãn z + i = 2 là đường tròn có phương trình
A. x 2 + y 2 = 2 .
B. x 2 + y 2 = 2 2 .
C. x 2 + y 2 = 4 .
D. x 2 + y 2 = 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đặt
Đặt Số phức w được biểu diễn bởi điểm M(x';y')
Em có:
Em có:
Mà x = 3y + 2 nên w =
Vậy số phức w được biểu diễn bởi đoạn thẳng: x + 7y + 9 = 0
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Đáp án C
w = 1 − i z ⇒ i z = 1 − w ⇒ z = 1 − w i = − i + i w
z + i = 2 ⇔ − i + i w + i = 2 ⇔ i w = 2 ⇔ i w = 2 ⇔ w = 2
Vậy tập hợp các số phức w là đường tròn tâm O 0 ; 0 và bán kính R = 2 .