K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Giải bài 6 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 6 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 6 trang 58 sgk Đại số 11 | Để học tốt Toán 11

3 tháng 4 2017

a) 1110 – 1 = (1 + 10)10 – 1 = (1 + C110 10 + C210102 + … +C910 109 + 1010) – 1

= 102 + C210102 +…+ C910 109 + 1010.

Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.

b) Ta có

101100 – 1 = (1 + 100)100 - 1

= (1 + C1100 100 + C2100 1002 + …+C99100 10099 + 100100) – 1.

= 1002 + C21001002 + …+ 10099 + 100100.

Tổng sau cùng chia hết cho 10 000 suy ra 101100 – 1 chia hết cho 10 000.

c) (1 + √10)100 = 1 + C1100 √10 + C2100 (√10)2 +…+ (√10)99 + (√10)100

(1 - √10)100 = 1 - C1100 √10 + C2100 (√10)2 -…- (√10)99 + (√10)100

√10[(1 + √10)100 – (1 - √10)100] = 2√10[C1100 √10 + C3100 (√10)3 +…+ . (√10)99]

= 2(C1100 10 + C3100 102 +…+ 1050)

Tổng sau cùng là một số nguyên, suy ra √10[(1 + √10)100 – (1 - √10)100] là một số nguyên.

23 tháng 5 2017

a) \(11^{10}-1=\left(10+1\right)^{10}-1\)\(=C^0_{10}10^{10}+C^1_{10}10^9+...+C^9_{10}10+C^{10}_{10}-1\)
\(=10^{10}+C^1_{10}10^9+...+C^8_{10}10^2+10.10\) chia hết cho 100.
b) \(\left(101\right)^{100}-1=\left(100+1\right)^{100}-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^1_{100}100+C_{100}^{100}100^0-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+100.100+1-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+10000\) chia hết cho 10000.



16 tháng 7 2016

ko thể cm

28 tháng 7 2016

K thể chứng minh vì nó vốn k có dạng viết tắt thành phân số

17 tháng 10 2019

\(10^{100}+10^{51}+25=\left(10^{50}\right)^2+10\cdot10^{50}+25\)

\(=\left(10^{50}\right)^2+2\cdot10^{50}+5+5^2=\left(10^{50}+5\right)^2\)là SCP (Đpcm)

17 tháng 10 2019
2.10^50.5
24 tháng 3 2020

1110-1=(11-1)(119+118+...+11)=10(119+118+...+11)⋮10

Vì 1110-1⋮10=>11x-1⋮10<=>(119+118+...+11)⋮10

=>10(119+118+...+11)⋮100

=>1110-1⋮100

29 tháng 6 2020

Ta có:\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)> \(\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)[ 90 p/s \(\frac{1}{100}\)]

= \(\frac{1}{10}+\frac{90}{100}=\frac{10}{100}+\frac{90}{100}\)=\(\frac{100}{100}=1\)

Vậy \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)>1

\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)

19 tháng 3 2017

1110-1=(1+10)10-1=(1+c11010+c210102+...+c910109+1010)-1

=102+c210102+...+c910109+1010

tổng sau cùng chia hết cho 100 => 1110-1chia hết cho 100

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ