Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D.
a, Chứng minh:
i, AC + BD = CD
ii, C O D ^ = 90 0
iii, AC.BD = A B 2 4
b, Gọi E là giao điểm của OC và AM, F là giao điểm của MB và OD. Cho biết OC = 2R, hãy tính diện tích xung quanh và thể tích hình trụ tạo thành khi cho tứ giác EMFO quay quanh EO
a,i, Sử dụng tính chất hai tiếp tuyến cắt nhau có CA = CM và DM = DB nên AC + BD = CM + DM = CD
ii, C O D ^ = C O M ^ + M O D ^ = 1 2 A O M ^ + M O B ^ = 1 2 A O B ^ = 90 0
iii, ∆COA:∆ODB (g.g) => AC.BD = OA.OB = A B 2 4
b, với OC = 2R, OM = r, chứng minh được M C O ^ = 30 0
=> M O C ^ = 60 0 . Từ đó tính được EM = OM.sin 60 0 = R 3 2
OE = OM.cos 60 0 = R 2 ; Sxq = 2π.ME.OE = πR 2 3 2 (đvdt)
Và V = π M E 2 . O E = 3 πR 3 8 (ĐVTT)