Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y = 1 2 x 4 - 3 x 2 + 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = - x + 2 x + 2
+) Tập xác định: D = R\{-2}
+) Ta có:
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )
+) Tiệm cận đứng x = -2 vì
Tiệm cận ngang y = -1 vì
Giao với các trục tọa độ: (0; 1); (2; 0)
Đồ thị
Với m = 2 ta có hàm số
- Tập xác định : D = R\{-1}.
- Sự biến thiên :
⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).
+ Cực trị : hàm số không có cực trị
+ Tiệm cận :
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số
⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên :
- Đồ thị :
Do đó, hàm số đã cho nghịch biến trên tập xác định.
+ Giới hạn:
⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số
y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
Tập xác định: D = R
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )
Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)
Hàm số đạt cực đại tại x = 0; y CĐ = 0
Hàm số đạt cực tiểu tại x = 1 hoặc x = -1; y CT = −2
Đồ thị có hai điểm uốn:
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại
Hàm số
- Tập xác định: D = R\{2}
- Sự biến thiên:
⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).
+ Cực trị : Hàm số không có cực trị
+ Tiệm cận:
⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
Khi a = 3/2 thì
y' = 0 ⇔ x 2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.
Đồ thị như trên Hình 1.18
Vì
nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số
như trên Hình 1.19
Khảo sát hàm số y = 1 2 x 4 - 3 x 2 + 3 2
- TXĐ: D = R
- Sự biến thiên:
+ Chiều biến thiên:
+ Giới hạn tại vô cực:
+ Bảng biến thiên:
Hàm số đạt cực đại tại x = 0, yCĐ = 3 2
Hàm số đạt cực tiểu tại x = ; yCT = -3.
- Đồ thị:
+ Đồ thị hàm số nhận trục tung là trục đối xứng.
+ Đồ thị cắt trục tung tại (0; 1,5).