Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SC tạo với mặt phẳng (SAB) một góc 30 0 . Thể tích của khối chóp đó bằng:
A . a 3 3 3
B . a 3 2 4
C . a 3 2 2
D . a 3 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Ta có:
Gọi cạnh hình vuông là x
và AC =x 2
Từ đó ta có x=a 3 . Do đó SA = a
Thể tích khối chóp cần tìm là
Chọn đáp án B
Đáp án B
Ta có V S . A B C D = 1 3 S A B C D . S A
Dễ có S A B C D = A B . A C = a . a 3 = 3 a 2 ,
và S A = A C . tan A C S ^ = A C . tan 30 o = a 2 + 3 a 2 . 3 3 = 2 3 3 a .
Từ đây ta suy ra V S . A B C D = 1 3 S A B C D . S A = 1 3 . a 2 3 . 2 3 3 a = 2 3 a 3 .
⇒ Chọn đáp án B.
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Chọn A
=> SB là hình chiếu của SC lên mặt phẳng (SAB).
.
Xét tam giác SBC vuông tại B có
Xét tam giác SAB vuông tại A có:
Đáp án D
Ta có
Vậy SB là hình chiếu vuông góc của SC lên mặt phẳng (SAB)