Giới hạn lim x → 0 - 1 x 1 x + 1 - 1 bằng
A. 0
B. -1
C. 1
D. - ∞
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)
=> A
\(\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)}{x-3}=\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)\left(\sqrt{x+1}+2\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}=\lim\limits_{x\rightarrow3}\frac{2\left(x-3\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}\)
\(=\lim\limits_{x\rightarrow3}\frac{2}{\sqrt{x+1}+2}=\frac{2}{4}=\frac{1}{2}\)
Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định
\(\Rightarrow\) Giới hạn đã cho ko tồn tại
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+1}+x}{3x+5}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{x^2}}+1}{3+\frac{5}{x}}=\frac{2}{3}\)
Ta có:
Chọn B.