Cho số tự nhiên P và 8P2 +1 là số nguyên tố . Vậy 8P-1 là số nguyên tố hay hợp số ?
GIẢI CHI TIẾT HỘ MÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Cho p và 8p-1 là các số nguyên tố. chứng minh rằng 8p+1 là hợp số
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏaa) vì p là số nguyên tố lớn hơn 3. => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵ N*)
Nếu p=3k+2 => p+4 =3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp số( trái với đề, loại)
vậy p=3k+1.
=> p+8 = 3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.
=> p+8 là hợp số.
Kết luận: p+8 là hợp số.(đpcm)
b) hình như còn thiếu cái điều kiện gí ý!? làm mình mệt mỏi quá.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Bạn tham khảo nhé!
Với p=3 =>8p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số
Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.
TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.
TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)
Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.
TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)
Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.
Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.
hợp số
hợp số