Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu P : x 2 + y 2 + z 2 + 4 x + 2 y + z = 0 và Q : x 2 + y 2 + z 2 − 2 x − y − z = 0 cắt nhau theo một đường tròn (C) và cho ba điểm A 1 ; 0 ; 0 , B 0 ; 1 ; 0 , C 0 ; 0 ; 1 . Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với cả ba đường thẳng AB, AC, BC?
A. 4 mặt cầu
B. 1 mặt cầu
C. 2 mặt cầu
D. Vô số mặt cầu
Đáp án A
Ba điểm A,B,C tạo thành một tam giác. Có 4 đường tròn tiếp xúc với cả ba đường thẳng AB,AC,BC (hình vẽ trên).
Mặt cầu (S) cần tìm tiếp xúc với 3 đường thẳng AB,AC,BC, do đó nó phải chứa 1 trong 4 đường tròn trên.
Xét với 1 đường tròn bất kì trong 4 đường tròn trên, giả sử là đường tròn tâm (O) nằm bên trong tam giác, ta có:
Tâm I của mặt cầu (S) phải nằm trên đường thẳng d đi qua tâm O và vuông góc với (ABC). Mặt khác, I thuộc mp (P) chứa (C), (C) lại không vuông góc với (ABC) do đó chỉ có 1 giao điểm của d với (P). Tương tự, với 3 đường tròn còn lại, với mỗi đường tròn ta tìm được 1 tâm I nữa. Vậy có 4 mặt cầu thỏa mãn yêu cầu.