Tập hợp các điểm có tọa độ x ; y ; z sao cho 0 ≤ x ≤ 3 , − 1 ≤ y ≤ 5 , − 2 ≤ z ≤ 2 là tập hợp của một khối đa diện (lồi) có một tâm đối xứng. Tìm tọa độ tâm đối xứng đó.
A. 3 2 ; 3 ; 2
B. 2 ; 3 ; 2
C. − 1 ; 0 ; 2
D. 3 2 ; 2 ; 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phức z = x + y i x , y ∈ ℝ có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình
( C ) : x - 1 2 + y - 2 2 = 4 ⇒ - 1 ≤ x ≤ 3
w = z + z ¯ + 2 i = x + y i + x - y i + 2 i = 2 x + 2 i
Tọa độ điểm biểu diễn số phức w là M ( x ; 2 ) , x ∈ - 1 ; 3
Vậy, tập hợp các điểm biểu diễn của số phức là w là đoạn thẳng AB với A(-1;2),B(3;2)
Chọn đáp án B.
Đáp án D
Tập hợp các điểm thỏa mãn yêu cầu bài toán là khối hộp chữ nhật với các kích thước là x , y , z = 3 , 6 , 4 .
Tâm đối xứng I của khổi hộp chính là giao điểm của ba mặt phẳng trung trực tương ứng với 3 cạnh xuất phát từ một đỉnh của khối hộp. Do đó I 0 + 3 2 ; − 1 + 5 2 ; − 2 + 2 2 = 3 2 ; 2 ; 0 .