Tìm số dư của phép chia (19971998+19981999+19992000)10 khi chia cho 111
( Lưu ý : sử dụng đồng dư thức để giải )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với n = 1 ta có:
Vế trái = 1. 4= 4.
Vế phải = 1.(1+ 1)2 = 4.
=> Vế trái = Vế phải. Vậy (1) đúng với n = 1.
+ Giả sử (1) đúng với n=k; k ∈ N*; tức là ta có:
1.4+2.7+⋅⋅⋅+k(3k+1)=k(k+1)2 (2)
Ta chứng minh nó cũng đúng với n= k+1. Có nghĩa ta phải chứng minh:
1.4+2.7+⋅⋅⋅+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2
+ Thật vậy do 1.4+ 2.7+ ...+ k. ( 3k+ 1) = k( k+1)2 nên
1.4+2.7+⋯+k( 3k+1)+( k+1).(3k+4)=k(k+1)2+(k+1)(3k+4)
= k( k2+2k+ 1)+ 3k2 + 4k+ 3k+ 4
= k3 + 2k2 + k+3k2 + 7k+ 4 = k3 + 5k2 + 8k+ 4 = (k + 1).(k + 2)2
Do đó (1) đúng với mọi số nguyên dương n.
Căng thật, lớp 6 đã học đồng dư =((!
301293 : 13
Ta có: 301246 đồng dư với 1 (mod 13)
=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.
Vậy 301293 : 13 dư 93
P/s: mình không chắc, mới học lớp 6
Ta có :
3012 \(\equiv\)9 ( mod13 )
301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )
=> 301293 \(\equiv\)1 ( mod13 )
Vậy 301293 : 13 dư 1
3100-1=(34)25-1=9125-1
9125 chia hết cho 7 nên 9125-1 chia 7 dư 1
Đồng dư thì chịu!!!
Ta có: 1998 ≡ 0 (mod 111) => 1997 ≡ -1 (mod 111) và 1999 ≡ 1 (mod 111)
Nên ta có: 1997^1998 + 1998^1999 +1999^2000 ≡ 2 (mod 111) (1997^1998 + 1998^1999 +1999^2000 )10 ≡ 210 (mod 111)
Mặt khác ta có: 210 = 1024 ≡ 25 (mod 111) Vậy (1997^1998 + 1998^1999 +1999^2000 ) ^ 10 chia cho 111 có số dư là 25
nếu là 20172017 thì bằng 1551693,6153
lấy 4 chữ số ở phần thập phân
t.i.c.k cho mình nhé
Bạn ơi , bài này tra mạng có nhiều lắm
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick